
I i ,__

. :-_ _:'.* 4_ ¸ t _ ,j ._

J

Using data tagging to improve the performance of Kanerva's

sparse distributed memory

David Rogers

lanuary 1, 1988

RLACS Technical Report TR-88.1

NASA Cooperative Agreement Number NCC 2-408

(bALiA-Cfi-18_557} LSI_G I_A'/J "J.tGGJ, IiG TC
aI'EbOV_. 'IE_. E,EI, ICE/_a_liCI: GI: I_J.I_JEIiVA'S SPAESB
L.,151RII3IJ'IED _ltl_(t_ (_,ASA) "-t l: CSCL 09_

G31b I

Unclas

0175157

Research Institute for Advanced Compoter Science

m

Using data tagging to improve the performance of Kanerva's
sparse distributed memory

David Rogers

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report TR-88.1

January 1, 1988

Abstract: The standard formulation of Kanerva's sparse distributed memory (SDM) involves the selection

of a large number of data storage locations, followed by averaging the data contained in those locations to
reconstruct the stored data. In this work I discuss a variant of this model, in which the predominant pattern

is the focus of reconstruction. First, I will propose one architecture that returns the predominant pattern

rather than the average pattern. However, this model will require too much storage for most uses. Next, a

hybrid model will be proposed, called tagged SDM, which approximates the results of the predominant pat-
tern machine, but is nearly as efficient as Kanerva's original formulation. Finally, we will show some experi-

mental results which confirm that significant improvements in the recall capability of SDM can be achieved

using the tagged architecture.

Work reported herein was supported in part by Cooperative Agreement NCC 2-408

between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association (USRA).

Using data tagging to improve the performance of Kanerva's

sparse distributed memory

David Rogers

Research Institute for Advanced Computer Science

January 1, 1988

1. Introduction

Kanerva's sparse distributed memory (SDM) is a simple and mathematically elegant formulation for an associa-

tive memory (Kanerva, 1988). It is related to the cerebellar model of Mart (1969) and the Cerebellar Model

Arithmetic Computer (CMAC) of Albus (1971, 1981). In all of these models, the memory is sparse -- that

is, the number of physical storage locations is small relative to the number of possible addresses -- and dis-

tributed -- that is, each datum is stored in a large number of physical locations. These properties can be used to

build a memory that is associative and fault-tolerant, two qualifies that characterize human memory.

In distributed storage, writing is done by storing a data pattern in multiple locations within some radius of a

reference address. Reading is more difficult. First, we collect all the data patterns stored within some radius

of the reference address. Second, we need to construct a single data pattern that will represent the contents of

the memory from the multiple patterns collected. How is this construction accomplished? Kanerva's model

proposes one solution: that the contents of the memory should be represented by the bitwise average of the

multiple data patterns. However, other solutions are possible. In particular, we will discuss representing the

contents as the predominant pattern in the patterns collected.

This variant has a number of interesting features: for example, it always returns a data pattern that was previ-

ously stored. However, it is difficult to implement. In Kanerva's words, "The method is sound in principle,

but the task of deciding which word is the most frequent.., seems insurmountable" (Kanerva, 1984, p. 93).

For cases where many data patterns are stored, the proposed model will indeed be impractical. However, the

proposed architecture will lead to another, hybrid, architecture called tagged SDM. Tagged SDM will offer a

better approximation of the predominant pattern than does the standard model.

Finally, we will show some experimental comparisons between Kanerva's SDM and the tagged SDM. These

Data Tagging - 2 - TR-88.1

results will illustrate the ability of tagged SDM to correct bitwise errors that ate generated in the standard

model. By increasing the fidelity of the stored data, we significantly improve the capacity of a sparse dis-

tributed memory implementation.

2. Distributed Storage

In the general model for a sparse distributed memory, the data pattem is stored in a set of locations that are

within a given radius of some address. For example, in figure I, writing ct at reference address A stores copies

of data pattern ct in the six locations within the shown radius. Similarly, writing 13 at reference address B

stores copies of data pattern 13in the five locations within the circle around point B.

[]
[]

[] A

[]

[]
LI

... s

(g

[]

[]

[]

[]

[]

L2

[] []
L3

[] []

[]

[]
[]

Figure 1: Distributed storage after writing ot at A and 13at B

Data Tagging - 3 - TR-88.1

What is the 'content' of a given physical location, such as LI? If a location contains only one pattern, we

would feel comfortable saying that it contained that item (for L1, the data pattern a). This is not as clear for

locations that contain more that one pattern, such as L2. Would the 'content' be a, _, or some mixture of the

two? In these cases, it is uncertain what the 'tight' answer should be.

This uncertainty is compounded when we try to read at a reference address. For example, let's read at point

A: if we pool the contents of the locations within the given radius around A, we have a set of five _'s and

two l]'s. What is the answer we should return?

Essentially, the problem involves how we take a group of multiple patterns and generate a single pattern that

represents the contents of that set Some kind of voting seems in order, two kinds of voting come to mind.

First, we could have each pattern in the pool participate in bitwise voting towards the value of each bit in the

'answer'. In this case, each pattern instance votes for a zero in a bit position if it has a zero in that position,

and for a one in a bit position if it has a one in that position. The value of a position in the answer is deter-

mined by whether it receives more votes for a zero or for a one. Essentially, we are taking a predominant vote

bitwise to get the answer. This approach is used in Kanerva's formulation for SDM, and we will refer to it as

the standard model for SDM.

Second, we could select the most frequently appearing data pattern as our 'answer'. All equivalent data pat-

tern instances vote as a block. The block with the most votes wins, and that data pattern is the answer. In

this case, we axe taking predominant vote patternwise to get the answer. This approach will be referred to as

the predominant pattern model.

Each approach is of interest in itself. Depending on the data patterns we are storing and the desired use of the

memory, one or the other technique may be preferable. The averaging process of the standard model may aid in

using common features among different data patterns, while the error-resistance of the predominant pattern

model may be useful in removing errors from patterns as the memory fills. In some cases, the fact that the

predominant pattern model always returns a previously stored data pattern may be useful.

3. Implementation of Kanerva's SDM

Figure 2 illustrates the standard formulation for Kanerva's sparse distributed memory. (This figure will show

a memory with twelve locations, ten-bit addresses and ten-bit data.) Initially, the location addresses are

filled with random values, and the data counters are zeroed. All operations begin with addressing the memo-

Data Tagging -4- TR-88.1

Location
Addresses

Reference Address

[0101010110]

0101010101

0001011110

1011010110

Radius

Dists Select

Data In

iolol ol,I,I ,I °l,I olli

Counters

S°m:I_'1-9121713,131-31.,11-3131
_ _ _ _ _ _ _ _ _ Thresholding

D.taOut:[ol ol 111] 11'1o1' Iol ,]

Figure 2: Standard formulation for sparse distributed memory (SDM)

ry; this entails finding the hamming distance between the reference address and each of the location address-

es. If this distance is less than or equal to tl_ hamming radius, the weight for that locations is set to 1, and

that location is termed selected. Selection is noted in the figure as non-gray rows.

If we are writing to memory, all selected counters beneath elements of Data In equal to 1 are incremented and

all selected counters beneath elements of Data In equal to 0 are decremented. This completes the write opera-

tion.

If we are reading from memory, we collect the sum of the selected data counters into the register Sum. If the

value of a coumer sum is greater than or equal to zero, we set the corresponding bit in Data Out to 1; other-

DataTagging - 5 - TR-88.1

wise, we set the bit in Data Out to O. (When reading, the contents of Data In are ignored.)

This example makes clear that the data is distributed during writing over the data registers when writing, and

is reconstructed during reading by averaging the sums of these counters. However, depending on what addi-

tional patterns was written into some of these locations, the reconstruction may have one or more bitwise

elTO/'S.

4. Implementation of the predominant pattern SDM

Figure 3 illustrates one possible implementation for a predominant pattern sparse distributed memory. As

with the standard formulation for SDM, the location addresses are filled with random values, the tag coun-

ters are zeroed, and the pattern bank is zeroed. All operations begin with addressing the memory. This entails

finding the hamming distance between the reference address and each of the location addresses. If this dis-

tance is less than or equal to the hamming radius, that location is selected. Selection is noted in the figure as

non-gray rows.

Writing to memory consists of getting a tag for our new pattern followed by setting the tags in the tag coun-

ters. Getting a rag can be thought of as a symbol-table lookup. First, we check the table for an occurrence of

the pattern. If the pattern is already in the table, we use the assigned index; otherwise, we add the pattern to

the end of the table, and use the newly-assigned index. Setting the tags involves incrementing the tag counters

corresponding to this tag number in all selected locations.

This process is illustrated m figure 3. We are writing the data pattern 1111101111 at address 0101010110.

The pattern is stored in pattern bank item 3, since it is not currendy in the pattern bank, and thus gets tag 3.

All selected locations have their third tag counter incremented.

If we are reading from the memory, we add the tag counters from the selected locations into the Tag Sums.

The entry with the largest value is the index of the answer. The data pattern associated with that index is

returned as the answer.

This implementation of predominant pattern SDM is suitable for a small number of data patterns, but as the

number of data patterns increases, it becomes very expensive to allocate the storage needed. In this regard, it is

far less practical than Kanerva's formulation. For example, start with,a SDM with 210 (1024) bit addresses

and data, and L physical locations. Kanerva has shown that this memory can store about L/23 patterns, and the

DataTagging - 6- TR-88.1

Reference

[0101Ol0110]

0101010101

Address Hamming

D Tag Counters

Select 1 2 3 4

"'/,',_ ,/ //,//_,////;_¢:,///:!¢///::,

Vl///Jl J
00010111 I0

n
1011010110

°.°,

.°°°

°o..

.oo.

°.°.

,oo.

,.°.

°°,.

oooo

°°°°

12121 101....
Tag Sums

Pattern Bank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1111101111

0100010001

001000111 1

Figure 3: One design for a predominant pattern sparse distributed memory

data locations require (if we assume a counter is 23-bits wide) L * 23 * 210 bits of storage. To store L/23 pat-

terns in the predominant pattern SDM, we will need L/23 * 210 bits to construct the pattern bank, and L/23 *

23 * L bits to construct the tag counters. Solving for L, we can show that predominant pattern SDM will

require more storage than standard SDM when L :2_2 t3 + 27, which is about 8,000 locations (and about 1,000

patterns).

For applications that greatly exceed this amount, the required storage makes the predominant pattern model

prohibitive. However, the predominant pattern model is still of interest; perhaps a hybrid model would have

a cost close to that of Kanerva's SDM but a recovery property close to our predominant pattern model. Given

Data Tagging - 7 - TR-88.1

Reference Address Hamming

I', 010]0101101 ['_

_ Select

0101010101

0001011110

e/,//////,/

1011010110

Tag Counters

1 2 3 4

121213101....
Tag Sums

Figure 4: One design for a hybrid sparse distributed memory

the general formulation for Kanerva's SDM, can we construct an answer that approximates the pattern that

would be generated by the predominant pattern model?

5. Prototype of hybrid SDM

Figure 4 shows a hybrid SDM that contains some of the features of a standard SDM, and some of the features

of our predominant pattern SDM. We have eliminated the Pattern Bank. Instead, we use data counters to

store the data patterns exactly as done with the standard formulation for Kanerva's SDM. However, we still

increment the tag associated with the data as we did in the predominant pattern model, with each data pattern

DataTagging - 8 - TR-88.1

assigned a sequential number. (Of course, without the Pattern Bank, we can no longer recognize duplicate pat-

terns. This problem will be dealt with in our next design.)

Because of the tags, we can still use the Tag Sums to calculate which panem number would have won the pre-

dominant pattern competition. The question is how we can use this information since we can no longer 'look

up' the desired pattern. The key is to notice that some locations are tagged as having lots of the desired data

pattern, while others have little. This suggests that a weighted combination of the locations may be possible

to maximize the desired pattern.

These weights can be calculated if we assume that the data patterns are uncorrelated. Appendix A shows how

this assumption leads to a formula for the weighting that maximizes the contribution of the desired data pat-

tern in the output. This weight is simply S/N, where S is the contents of the counter for the desired tag, and

N is the sum of all the other tag counters in a location. Each location's data counters are multiplied by their

weight before adding into the sum.

There are two problems with this design: first, we still need a set of tag counters for each data pattern, and

second, the weights axe not integer valued, and so may increase the computational demand by forcing the use of

floating point numbers. While improved, this design is not yet very practical.

6. Model for tagged SDM

The final model to be discussed here is called tagged SDM. It circumvents the problems in our first proto-

type. Figure 5 shows the architecture of this model. The largest change is that we have severely limited the

number of tags. Indeed, the example shown has only has four different tags. Instead of assigning tags

through a sequential counter, we use a tag function to calculate the tag from the data pattern. This tag func-

tion plays the role of a hash function in that it partitions the data patterns into equivalence classes; this distri-

bution usually assigns non-equivalent data patterns different tag numbers. This will cause errors whenever we

have overlap between two data patterns with the same tag value. For practical implementations, around 32

tags makes such overlaps rare.

Second, we note that a scale has been added for the weights. This is an integer that is multiplied by the S/N

ratio to give the weight. Proper selection of the scale can eliminate the fractional values that plagued the

intermediate prototype.

This model approximates the behavior of the predominant pattern design. However, as it is just an approxima-

Data Tagging - 9 - TR-88.1

Reference Address

[0101010110 I

#/###/##/##
0101010101

f##'#/###////#A
r/#/##///f'E/EE_
0001011110

fl///####/##t/l/_
rt//#E/I/#E/EEJ
r##t/l/////###/EJ
/I//#E###/,#/_
1011010110

_#E##EE###

Hamming Scale

Tag Counters

Select 1 .2 3 4 Weights

Data In

TagSum: I=1 21 31 ° I_["_
Best Tag

DataOut:10101011111'01110 '1
Figure 5: Design for the tagged sparse distributed memory

tion, it does not always return a stored pattern. The interest in this model is in the error-resistance of the pre-

dominant pattern design: transfer of that property to an efficient relative of Kanerva's SDM might offer a

valuable increase in robustness as we fill the memory.

7. Computational costs of tagging

Assessing the costs of data tagging is not a simple process, for it will depend crucially upon the implementa-

tion. For these comment, we assume that cost is caused by adding steps to the memory cycle that cannot be

performed in parallel with other steps. In this light, data tagging adds cost to the read cycle but not to the

write cycle.

Data Tagging - 10 - TR-88.1

The tag counters are quite similar to the data counters. The only difference is that all data counters of the

selected locations are either incremented or decremented during a write operation, while only the tag counter

associated with the tag of our data is incremented, and the other tag counters remain untouched. (Sensitive

souls who find this asymmetry distasteful can be assured that one can formulate the tag counters to behave

identically to the data counters. For this work, such an alternate procedure was not felt to make the issues

clearer to the reader.) Since the tag counters can be incremented in parallel to the operations on the data coun-

ters, there is no additional time cost to data tagging during the write cycle.

During the read cycle, however, data tagging increases the cost an amount roughly equivalent to the cost of

summing the data counters. This is because we cannot sum the tag counters and the data counters in parallel.

Information that we obtain from the tag counters is needed before we can sum the data counters. Once the tag

counters are summed, there are additional steps that must be taken. First, we must scan each tag to find the

tag with the maximum value, called the signal tag. Second, all selected locations (in parallel) use the infor-

matSon about the signal tag to calculate the amount of signal versus the amount of noise in their location.

Finally, all selected locations (in parallel) use the amounts of signal and noise to calculate the weight that

should be given to their location.

Once the weights are assigned, the summing of the data locations can proceed. This process costs slightly more

than it did with the standard SDM model, for before we sum the data counter, we must multiply their values

by the weight associated with the location. However, since all locations can do this operation in parallel, this

should not result in a significant additional cost.

The major cost of tagging involves summing the tag counters, since this cannot be performed in parallel with

summing the data counters. At worst (that is, if summing of counters is the major cost), tagging doubles the

number of cycles it takes to read from the memory. However, this cost only becomes apparent in massively

parallelized versions of SDM (Keeler, 1986). For non-parallel versions of SDM, the additional cost of data

tagging will not be noticed due to the massive cost of the addressing phase.

One suggestion to avoid these costs would be to use the standard SDM formulation and iterate, using the natu-

ral error-correcting abilities of SDM. This is not sufficient. For example, in the case where we are reading

data at the exact address we once wrote at, standard SDM will start generating errors as we fill the memory

with other patterns. These errors are not correctable by iteration, as the address we wrote at is no longer a

stable point. However, data tagging can still correct many of these errors.

Data Tagging - 11 - TR-88.1

8. Storage costs of tagging

Data tagging also has a cost relative to the storage requirements of the memory. This is due to the additional

counters that are needed to keep track of the tags. For example, in a 32-tag model, we would need 32 addition-

al counters for each physical location. For 256-bit wide data counters, this is a requirement for roughly 12%

more counters than in the standard formulation for SDM.

While 12% may seem small, it leaves open the question as to whether the improvements we have seen could

have been obtained in a much simpler manner, that is, by simply using these counters to add on 12% more phys-

ical locations to the memory. The claim is that it is significantly better to use the counters as tag counters,

rather than to use them to construct additional counters. We will not offer a formal proof, but instead offer

the following 'back of the envelope' argument.

The capacity of the memory is roughly linear with respect to the number of physical locations. Thus, doubling

the number of physical locations roughly doubles the number of patterns that can be stored. To consider the

example given above, a 12% increase in the number of physical locations results in approximately a 12%

increase in the capacity of the memory.

We have not yet presented the results from data tagging experiments. Indeed, the results are not simple to gen-

eralize about, since they depend crucially on the correlatedness of the addresses and the amount of memory cur-

rently in use. However, in the worst cases, an average correction of more than 50% of the bitwise errors was

observed. If we assume that the occurrence of bitwise errors is linear with respect to the number of writes,

then we would need to double the number of physical locations to get similar error behavior.

In conclusion, while there are storage costs to data tagging, the improvement in performance of the memory is

far more considerable than it would be had we simply used the storage to construct additional counters. The

arguments given above were conservative. Most experimental results suggested even more substantial

improvements than the case presented here.

9. Experiments

Finally, we present results from a simulation of tagged SDM, and compare those results to a standard SDM

model. The comparisons will demonstrate that the tagged SDM has a significantly increased resistance to

errors as we reach the capacity of the memory. All of the experiments we conducted by writing one word of

DataTagging - 12- TR-88.1

data to the memory at a given address, then writing random data at random addresses to the memory, while

watching the effect of this on recall. The effect measured was the number of bits in error after reading once

at the initial address. A rough algorithm describing the experimental process is given in figure 6.

{ Initialize the addresses and data patterns to random bits }

FOR i = 1 TO 300 DO

ai := RANDOM_BITS;

d i := RANDOMBITS;

END;

{ Write the first word; loop and read it over and over, writing

an additional address/data pair each time }

WRITE d I AT al;

FOR i = 0 TO 300 DO

offset_address := RANDOMIZE offset BITS OF al;

data := READ AT offset_address;

error := HAMMING_DISTANCE(d 1, data);

PLOT (i, error);

IF i # THEN

WRITE di+l AT ai+l;

END;

Figure 6: Pseudo-algorithm for conduct of first experiment with a given offset

The only part of this algorithm that needs additional comment is the idea of an offset. An offset is a number,

before we read at the initial address a 1, we invert offset number of bits in the address. One of the valuable fea-

tures of SDM is its ability to gracefully handle errors in the reference address. The experiments were designed

to discover whether tagging is also useful when we have errors in the reference address.

Of greatest interest will be the graphs m Figure 9, that show the percentage correction we obtain by using

the tagged version of sparse distributed memory. These graphs show the percentage of the errors generated by

the standard SDM model that were corrected by the tagged SDM model. (For simplicity, if neither the tagged

DataTagging - 13- TR-88.1

nor the standard model showed errors, the correction is graphed as 100%. The case did not arise where the

tagged SDM model generated errors where the standard SDM model did not.)

This process will show the value of tags when confronted with random filling of the memory. We will then

show that they are equally useful when dealing with correlated writing, that is, writing to memory at

addresses that are not roughly random in distribu/.ion. Given the increasingly poor behavior of the standard

SDM model as the addresses become more and more correlated, this offers a useful method to improve the per-

formance of Kanerva's SDM without sacrificing the associativity of the memory, the distributed nature of data

storage, or the simplicity of the model.

The following sections describe the experiments. For a more precise presentation of the conduct of the experi-

ments, the reader is referred to the Experimental section at the end of this report.

9.1 Performance of standard SDM

Figure 7 shows the error behavior of a standard sparse distributed memory as we write random data. For this

experiment, a 1000-location memory was used with 256-bit addresses. The data were generated by averaging

the results of eight independent trail runs. The value displayed is the average number of bitwise errors in the

data obtained by reading at a given address.

Two features in these graphs deserve comment. First, the degradation of the memory is gradual as the memory

fills, and the degradation is nearly linear. Second, the greater the number of errors in the address, the greater

the rate of degradation as we fill the memory. The former effect was predicted in the theoretical formulation

of Kanerva's sparse distributed memory; the latter effect has not been previously commented upon.

9.2 Performance of tagged SDM

Figure 8 shows the error behavior of a sparse distributed memory with the addition of tags as we write ran-

dom data. As with the previous experiment, we used a 1000-location memory with 256-bit addresses. This

data was, as in the previous experiment, generated by averaging 8 independent trial runs.

If one compares these results to the results of the standard SDM, the improvements in error behavior when

tags are used becomes apparent. We will explicitly show the percentage correction in following section, so

DataTagging - 14 - TR-88.1

t.,

rw

ioo

80

6O

40 -

20 -

0 J
0

Standaxd SDM {O offset)

1O0 200 300
Number of Writes

Ioo

80

60 -

= 4-0 -

20 t-,

0
0

Standard SDM (2 offlet)

''I I''

1O0 200 300
Number of Writes

Ioo

8O

6O

40

2O

0 '
0

5tanda.rd SDM (5 offset)

i i

1O0 300 300
Number _f Wrttes

IOO

8O

60

_,, 4(1

2O

Standard SDM (tO offset)

..... t I''

0 100 200 300
Number of Write_

Figure 7: Number of bitwise errors reading a standard SDM vs. number of random writes

you don't need to flip back and forth between figure 7 and 8. However, it should be noted that the point at

which the average number of errors becomes non-zero moves towards larger numbers of writes. This means

we have not only reduced the percentage of errors for a memory filled to a given capacity, but have also

delayed the onset of errors as we fill the memory.

DataTagging - 15- TR-88.1

B

re,

loo

8O

6o

40 -

20 -

0 '
0

Tagged SDM (0 offset)

IO0 200 300
Number of Writes

ioo

80

._ 60
0

= 40

2O

Tagged $DM (2 offset)

[.... f'

1O0 200 30Q
Number of Writes

B

£oo

80

60

4O

0 i J

0

Tagged SDM (3 offset)

I I

100 200 300
Number of Writes

ioo

8O

B 60 -
2

#0 -

20)-

0
0

Tagged SDM (i0 offset)

I ,.JhL

I00 200 300
Number of Writes

Figure 8: Number of bitwise errors reading a tagged SDM vs. number of random writes

9.3 Percentage correction by tagged SDM

Figure 9 shows the percentage of errors generated by a standard SDM that are corrected using a tagged SDM as

we write random data. These graphs were generated from the previous two pages of graphs, by taking the

ratio of the difference between the bit errors of standard and tagged SDM over the number of bit errors in the

standard SDM.

Massive correction of errors is seen in all cases. Specifically, around 70% of the errors generated by a standard

Data Tagging - 16 - TR-88.1

rr_

1oo

5O

0
0

_. Corrected -,sing Tags (0 offset)

.... I t

, ,,t I

1O0 200 :300
Number of Writes

loo

o

_ 50

0

0

_. Corrected using Tags (2 offset)

.... I I

.... l I,,,

1O0 200
Number of Writes

300

"7

"3

100

5O

Corrected using Tags (5 offset)

7

Ii

0

% Corrected using Tags (10 offset)

Figure 9: Percentage correction of errors using tags vs. number of random writes

SDM were corrected by using tags. Put mother way, tagged SDM produced approximately 30% of the errors

that a standard SDM produced. This represents a significant improvement of recall performance at a given

capacity. Equivalently, this represents the ability to obtain a given level of recall performance at much greater

capacities.

One feature worth noting is that the percentage correction correlates well with the number of writes, but is

relatively independent of small initial error in the address. This implies that convergence behavior during a

series of reads should be uniformly improved by using tags.

DataTagging - 17- TR-88.1

10. Experiments with Correlated Addresses

Data tags have been shown to significantly improve the performance of Kanerva's sparse distributed memory

when writing is done at uncorrelated addresses. It remains to be shown whether data tags are as useful when

we write using correlated addresses. Most real-life uses for SDM will have some correlation in their address-

es; thus, the performance of SDM in these uses is of the highest prority.

Before we continue, we need to explain how the generation of correlated addresses was done. Random address-

es have (on the average) 128 bits out of 256 bits that have value 1. We generated correlation by selecting

addresses that were on a sphere of radius N away from address "000...000". The points on this sphere are sim-

ply addresses with exactly N bits having the value 1. Each of the graphs on the following pages shows this

information above the graph.

The difficulty with correlated addresses is that the physical locations in our memory are not evenly filled.

The correlation introduces a bias towards overuse of the subset of the locations. Thus, the capacity of the mem-

ory is reduced when correlated addresses are used for writing. (Keeler (unpublished) demonstrates that the

proper selection of addresses for the physical locations is one method for improving performance with correlat-

ed addresses. It is possible that data tags can be used in cooperation with such techniques for additional perfor-

mance improvement.) Data tagging will he useful here if the variations in writing density are such that they

are felt over the area surrounding an address we wish to read from. It is unclear whether the concentration of

the memory caused by correlating data will improve or degrade the improvement we see using data tagging.

The experimental results will demonstrate that not only do we keep the high levels of correction seen in the

uncorrelated case, we surpass them. Thus, correlating addresses seems to increase the variation between the

contents of the selected locations. This allows data tagging to work even more efficiently.

10.1 Performance of standard SDM with correlated addresses

Figure 10 contains four graphs, showing the number of bit errors that occurred when writes used random

addresses, 96-bit addresses, 64-bit addresses, and 32-bit addresses. The major feature of note is the massive

degradation of capacity that occurs as we introduce increasing correlation into the addresses. This is due to the

increased dependence on a smaller and smaller subset of the physical locations as we increasingly correlate the

addresses we write at.

Data Tagging - 18 - TR-88.1

gr_

150

loo

5O

o

0

i 1

(Random addresses)

SLandard SDM (0 offseQ

''1 I''

I00 200 300
Number of Writes

150

i00 -

n,.,

50 -

0 i

0

(96-bit addresses)

Standard SD_I (0 offset)

100 200 3130
Number of Writes

150

ioo

5O

i r i

i-

b

F

F-
I ,4",

(64-bit addresses)
Standm-d S[}_I [0 offset)

150

ioo

5O

/f
0 ,,I ,, , , I ,,, , 0

O 100 300 300 0
Number of Writes

(32-bit addresses)

Standard SUM [0 offset)

.... I I

I t 1 I t I [I I t I I I I

I00 200 300
Nur_ber of Wr£tes

Figure 10: Number of birwise errors in a standard SDM vs. number of writes, for random
writes, 96-bit addresses, 64-bit addresses, and 32-bit addresses

10.2 Performance of tagged SDM with correlated addresses

Figure 11 contains four graphs, showing the number of bit errors that occurred when writes used random

addresses, 96-bit addresses, 64-bit addresses, and 32-bit addresses. In all cases, significant improvement in the

number of errors is noted relative to the standard SDM showing in figure 10.

However, what we wish to see is whether tagging offers greater benefit, less benefit, or about the same bene-

fit as we correlate the data. For this, we need to compare the percentage correction graphs, which are shown in

the next figure.

DataTagging - 19- TR-88.1

150

100

5O

(Random addresses)

Tagged SDM (0 offset)

.... I I

100 200 300
Number of Writes

150

too

50

(96-bit addresses)

Tagged SDM (0 offset)

.... I I

,,, ,I ,, ,_
I00 200 300
Nur'_ber of Writes

I50

1oo

50

(64-bit addresses)

Tagged SDM (0 offset)

.... I I
150

1.00

50

0 I00 200 300 0
Number of "a'r_tes

(32-bit addresses)

Tagged $DN (0 offset)

.... I I

J
S

100 200 300
Nu::nber of Write=

Figure 1 h Number of bitwise errors in a tagged SDM vs. number of writes, for random

writes, 96-bit addresses, 64-bit addresses, and 32-bit addresses

10.3 Percentage correction by tagged SDM with correlated addresses

Figure 12 contains four graphs, showing the percentage correction that occurred when writes used random

addresses, 96-bit addresses, 64-bit addresses, and 32-bit addresses. For mildly correlated data, the tagged

architecture improved the performance of the memory even more than it did for the uncorrelated case. This is

especially impressive in the 64-bit address case, where the average percentage correction had a minimum of 80%

correction.

Data Tagging - 20 - TR-88. I

rn

too

5O

(Random addresses)

Corrected using Tase (0 offeet)

.... I i

o ,, ,,IT, ,,I ,,,,
0 1O0 :_00 :300

Number of WrLtes

.= too

O

_ 50

(96-bitaddresses)

_.Corrected. uaing Taee (0 offset)

.... i I

0 ,,,,l,,,,I
0 100 20 O 300

Number of Wri.tes

P

c_

ioo

5O

(64-bit addresses)

_. Corrected using TaBs (0 offset)

.... i I

0 1O0 800 300
Number of W'ri.tes

100

O

_ 50

e,n

(32-bit addresses)
Y. Corrected. uting Tall,' (0 offset)

.... i i

-

,,,, t,,, , I

100 200 300
Number of W'r_te=

Figure 12: Percentage correction of errors using tags vs. number of writes, for random

writes, 96-bit addresses, 64-bit addresses, and 32-bit addresses

The more highly correlated 32-bit addresses case still shows highly significant correction, even when the mem-

ory was highly loaded. However, it had less success in delaying the onset of errors, possibly due to the rapid

onset of extremely large errors in the standard case shown in figure 10.

Data Tagging - 21 - 'I'R-_. l

11. Experiments with text

I chose not to use text for the major part of this study due to the amount of variance possible. Depending

on the format and the source of the text, it may be either highly correlated or nearly random. However, it is

still of imerest to see whether data tagging would be of help for some given sample of text.

The text was translated into addresses and data by simply taking 32-byte strings and treating the ASCII repre-

sentation of the text as an 8-bit chunk. Thus, a 32-character text string becomes a 256-bit address or data

string. For the addresses, the names and institutions were randomly chosen from a local address file. If they

were longer than 32 characters, the string was truncated, else they were padded with spaces to 32 characters.

For data, phone numbers (as text) were randomly selected from the file, and padded with spaces to 32-charac-

ters. Instead of writing random data patterns at random addresses, addresses and data pattern generated using

the above technique. A sample of the generated text is shown in figure 14.

Addresses

Jim Bigham; University of Waterl
Erol Gelenbe; Carleton Universit

J. M. Cotton; N-RL

Rebecca Gering; NASA

David Giles; University of IUin
Steve Bruell; Lunar and Planetar

J. R. Einstein; Rensselaer Polyt

Ellen C. Giles; University of Mi

Daniel F. Flores, Jr.; NASA-Ames

Ian Cuny; University of Missouri

Data

471-3434

213/825-2929

612/681-3352

213/822-1511

614/422-2571

202/357-9776 (w)
605/677-5295

713/453-7060

415/723-2419

814/863-1469

Figure 14: Some examples of generated text

The results of this experiments are shown on the following page as figure 13. First, we notice that the asymp-

tote is low, due to the high correlation among the data (nearly 2/3 of the average data pattern were the trail-

ing spaces). The major improvement seen by using tags is the delay in the onset of errors. For the standard

SDM, errors began (on the average) after only 10 writes. For the tagged SDM, errors began after about 80

writes. After the onset of errors, tagging still provides significant improvement in data recall, though the

percentage correction degrades to less than 25% by the time 300 writes were performed.

Attentive readers will have noticed that as the number of writes grows, the number of bitwise errors no

longer goes to 128. This is due to the massive amount of correlation in the data. First, most items are only

12 characters long, with 20 trailing spaces. Second, most of the characters in the data are numbers, which can

DataTagging - 22- TR-88.1

o
t.,

lO0

5O

0

Standard SDM (0 offset)

''f I''

100 200 :300
Number of Writes

1oo

f_

50 -
C13

0 i

0

Tsued SDM (0 offset)

''f t'

i L._"

100 200 :300
Number of Writes

em

ioo

5O

0

0

Corrected usin/_ TaBs (13 offset)

''I I

I I

I00 200 300
N_-mber of Writes

Figure 13: Number of bitwise errors reading a standard SDM and a tagged SDM using text

as address and data, and percentage correction of errors using tags, vs. number of writes

disagree on only 4 of the 8 bits in the character byte.

These results are suggestive, though many more studies would be needed to determine the improvement that

would be expected working with text from real-world cases. The effects of correlated data, in particular,

deserve a more detailed study. It is encouraging that, with the crudeness of this trial, consistent and signifi-

cant correction of errors was still seen.

DataTagging - 23 - TR-88.1

12. Number of tags needed

A final question of interest is the number of tags we need to obtain maximum benefit from data tagging. This

is a complex question, and one that will not be formally handled here. However, a few comments seem to be

in order, given the importance of selecting enough.tags to get improvements in performance, but not so many

that we waste resources to tittle additional benefit.

Tags are useful due to the variations in the amount of noise contained in different physical locations within a

given distance of some address. This amount of variation can be judged by using the variance expected. Fol-

lowing Kanerva (1988), the variance with respect to the number of writes to a location will be approximately

np 2, where n is the number of writes, and p is the probability that a given write will add data to that loca-

tion. It is common to use a hamming radius that results in the selection of approximately N 1/2 locations,

where N is the total number of physical locations. Thus, the probability p is NI/2[N, or/V "If2. The variance is

thus n/N.

If we are studying the memory with a given percentage of writes made, for example, n = .01*N, the variance

is constant. Since the tags depend on the variance in the number of writes to different locations for correc-

tion, and the variance does not degrade as we add more physical locations, we do NOT need to increase the

number of tags as we increase the number of physical locations. Also, the variance does not depend on the

number of dimensions in the address or data, and so changes in the number of dimensions should not affect the

number of tags needed.

This result is admittedly informal, but is suggestive of the power of data tagging. Once we have determined a

useful number of tags at some value of N, we can use the same number of tags for a much increased Value of

N. Since the experimental results show that a value of N=32 is suitable for the memory, we are assured of

the existence of a reasonable number of tags for any memory size.

13. Conclusions

This work proves that there exists a mathematical foundation for an improved method of averaging selected

locations in a sparse distributed memory, that data tags can be used to estimate the needed signal to noise ratio

in each location, and that experiments confirm a significant and consistent improvement in the recall capabi/ity

of a sparse distributed memory equipped with data tags. The high quality of the results supports the view

that data tags should be strongly suggested for inclusion into future SDM implementations.

DataTagging - 24 - TR-88.1

Especially interesting was the behavior of tagging with correlated data. The correction abilities of tagging

were amplified further when moderately correlated data was used to fill the memory. Since most real-life

data contains correlations that would be reflected in most representations, this would help protect the memo-

ry from premature breakdown in real applications. This again argues for the inclusion of data tags in future

implementations.

Data tags are but one possible way of implementing an ability to estimate the signal to noise ratio of a loca-

tion. However, they are not necessarily the only method, and are not completely accurate in their estimates.

It is quite possible that other methods may be found to give better estimates of the signal to noise ratio.

14. Future directions

A number of experiments and variations were not performed, and it may be interesting to study them at some

future date. For example, the effects of correlated data were not studied, nor were the effects of tagging on

the ability of the memory to generali:e from a given collection of data. The tag function is also a candidate

for change: perhaps tags should be selected by choosing the least represented tag in the hamming radius to

minimize collisions. Another tag function might optimize the selection of the same tag for close but

nonequivalent data pattems. The optimum number of tags was not explored, nor its relation to the number of

physical locations or the dimensions of an address. The fast computation of the predominant tag is an area of

interest; perhaps a procedure could developed where this is performed in parallel with the summation of the

data counters (such as a systolic array; see (Keeler and Denning, 1986)). All of these areas offer potentially

fruitful areas of study for future researchers.

Data Tagging - 25 - TR-88.1

Acknowledgments

A number of people contributed to the developmem of this work and the creation of an environment where it

was possible to do it. Foremost, Pentti Kanerva deserves mention for this ground-breaking work into SDM

and assistance in developing the mathematics needed for the signal to noise calculations. Peter Denning is

responsible for a series of challenging and thought-provoking discussions about these issues, and was a primary

figure in formulating the essence of the work. Mike Raugh is and has been a strong supporter of this project

and its members. Jim Keeler is an enthusiastic member of the SDM group (one day a week!) and inspired the

formal drawings for the workings of the memory. Umesh Joglekax originated the idea of using the sphere to

generate correlated data. Bruno Olshausen did a number of proofreadings with great enthusiasm. Thanks is

extended to all of RIACS, which has shown the foresight to support the development of this work, and

offered a fi'iendly environment that made it easy to enjoy the time spent working on this.

Funding agencies have been outstanding in their support of this work. Funds for this work primarily from

NASA Cooperative Agreement NCC 2-408. One can not help but feel proud of working with agencies and

organizations that made this development a priority.

Data Tagging - 26 - TR-88.1

Appendix A. Signal to noise ratio calculation

We are given a collection of locations L. that contain a mixture of signal and noise; we write each location in
I

the form L, = (s S + n.lV), where s. and n, are real numbers greater than or equal to zero. We wish to com-
i I 1 I I

bine these locations so as to maximize the signal and minimize noise. We can state this task as finding a set

of constants (w I • • • win) that maximize the signal to noise ratio when we sum the locations. The formula

for our sum is Lsu m = (X w i Li).

The signal terms simply add. For example, one unit of signal plus one unit of signal equals two units of sig-

nal. The noise terms are more complex, since the noise value N in each location is uncorrelated with a noise

value from another location. If we assume that N is a normally distributed random variable, then the terms

no longer add. Instead, they combine as the square root of the sum of the squares of the multipliers. (For

example, adding N to N does not give twice as much noise, but rather 21/2 as much noise. This is because ran-

dom noise can sometimes cancel out rather than augment independent noise. Signal, on the other hand, always

augments when added to another signal. For further detail, the reader is encouraged to consult a good text on

probability, for example, (Ross, 198,*).)

Data Tagging - 27 - TR-88.1

Equation (1) shows the calculation of the signal-to-noise ratio for the combined location Lsu m.

Signal(w/ w 2, win) = WlS l + w2s 2 + ... + w s"" "_ rtl rn

= E WS.
• I I
1

Noise(w I, w 2, •.., w m) = (wl2nl 2 + w22n22 + • • • +Wm 2nm2)1/2

Signal _l" w s._z

Noise (wl' w2, "" "' win) =

(Z wi2ni 2)1/2
1

(1)

To find the maximum of the signal-noise ratio, we take the partial derivatives of the signal-noise function

with respect to each of the variables (w 1 • • • Wm)" Extrema will exist where all of these derivatives equal

0. The partial derivative of equation (1) with respect to the weight w i is given in equation (2):

Signal

_w. Noise (Wl' W2' " " "' win) =
1

wj22 . _ w 2n 2)-1/2S. (_)I/2 W.r/.2 (J j j _ WS.
, j , , j J : (2)

J

What we are interested in is where these partials equal zero. Setting each partial to zero and simplifying, we

DataTagging - 28- TR-88.1

getthefollowingequations:

for i=ltom, w. =!

s. _" w'2n'2
• j J
J

2
n. E ws.

j JJ

(3)

We still cannot solve for w.. However, we can solve for the ratio of w. to w. :
t t j

2
w. $. n.

i t j

2
W. S. tl,
J J t

(4)

Equivalently, we can write the equation for w. with respect to w. :
j l

2
$. n.
j t

W. "-
J 2

S. ?l.
l j

W. z (5)

These equations give a simple linear interrelationship between the different weights. If we are not interested

in having the relative amplitude of the sum correct, we can just select any value for some weight, say w1, and

solve for the remaining weights.

DataTagging - 29 - TR-88.1

Appendix B. Example of using signal to noise ratio weighting

We can use equation (5) to give an example of combining locations. In this example, we will have three loca-

tions, each with one unit of signal, and with one, two, and three units of noise respectively. We will com-

bine the signals both with an unweighted average and with the suggested signal to noise determined weighting

to give the reader an idea of the effectiveness of this process. We will begin with three locations, called L 1,

L 2, and L3.

LI = S + 3N L2 = S + 2N 1.,3= S + N (6)

We wish to combine these locations so as to maximize the signal to noise ratio. Setting the weight used for

location L 1 to 1, we can calculate the weights to use for the remaining locations:

Wl= 1

2
S2 n 1 32

w 2 - w I - = 9/4 (7)
s I n22 22

s 3 nl 2 32

w3 - 2Wl - = 9
s I n 3 12

Equation (7) tells us that the best way to combine these locations is to take one measure of L 1, two and one-

quarter measures of location L 2, and nine measures of location L 3. (It is interesting that even in this simple

case, the weightings suggested are greatly different from simple averaging.) How much does this change the

signal to noise ratio relative to simple averaging of the three locations? We can answer that by calculating the

S/N ratio for each case:

Data Tagging - 30 - TR-88.1

Given Signal
Noise (Wl' w2' w3) =

(_. wi2ni2) 1/2
!

then

Signal 1 + 9/4 + 9
Noise (1' 9/4, 9) =

(3212 + 22(9/4) 2 + 1292) 1/2

49
m

2 (441) 1/2

= 1.16

Signal 1 + 1 + 1
Noise (1, 1, 1) =

(3212 + 2212 + 1212) 1/'2

49

m

2 (441) 1/2

= .802

We can see from these results that the signal to noise ratio in the combined location can be significantly

improved by using a weighted average rather than an unweighted average.

This work suggests that if we can correctly calculate the signal to noise ratio in a location, we can assign a

weight to that location so as to maximize the signal-to-noise ratio in the combined location.

Data Tagging - 31 - TR-88.1

Appendix C. Experimental

The experiments were conducted with a SDM program written in C, and running on a SUN-3/60. The size of

the memory was 1000 physical locations, with 256-bit addresses and 256-bit data. The addresses of the loca-

tions were generated randomly. When data tagging was included, the tags were in the range [1,32], which

required 32 tag counters per location. All counters were 16-bits words, and no overflow of the counters

occurred during any of the trials.

A scale of 128 was used. All weights were truncated to integers. Signal values greater than 1 were treated

as equal to 1 (in a process called signal equalization, to be describe more fully elsewhere), since we did not

do any writes more than once. If a location claimed to contain only signal and no noise, it was given a sig-

nal/noise ration of 5, rather than infinity. This gives such locations a weight 5 times greater than that of a

location with one unit of signal and one of noise.

The results used to generate figures 7, 8 and 9 were generated in the following way. A random address and

random data pattern were created. The data pattern was written into a cleared SDM at the given address, and
a counter for the number of writes was set to zero. This begins the testing cycle: we read from the memory

at the given address, and compare the result with the expected data pattern. The number of bits at which they

differ is recorded along with the counter. We then write some newly generated random data pattern at some
newly generated address, increment the counter, and go to the start of the testing cycle. (This process is identi-

cal for graphs where we read with an offset, expect that we flip that number of bits in the given address

before reading.) This generates information that can be plotted as Number of Writes versus Bit Errors.

To avoid effects that were apparent only in a specific run, the number of bit errors was averaged over 8 inde-

pendent runs. All results shown throughout the paper are from such 8-run averages.

The information for standard SDM and tagged SDM were obtained from the same runs by turning the tagging

off and on. This means that the comparisons of tagged versus untagged reading were from memories with iden-
tical structure and write histories.

The % Corrected Using Tags graphs were computed by graphing the ratio of the number of errors using stan-

dard SDM minus the number of errors using tagged SDM, over the number of errors using standard SDM. If

both standard SDM and tagged SDM gave no errors, correction was recorded as 100%. In no case in this study

using the average of 8 runs did tagged SDM give errors when standard SDM did not.

The results used to generate figures 10, 11, and 12 were generated in an identical fashion, except that all
addresses, rather than being randomly generated, were generated by first zeroing and then randomly turning on

the required number of bits.

The text sadngs for the text experiments were generated by randomly pulling names, institutions, and phone

numbers from the RIACS addresses file. 500 addresses were created by appending an institution to a name,

and either truncating to 32 characters or padding with spaces to 32 characters. 500 data patterns were created

by treaung phone numbers as text, and then padding to 32 characters with spaces. For the runs, whenever a

random address and data pattern were needed for writing, an address string and data string were chosen from

the set of 500. After selection, these strings were eliminated from future selection. Other than this differ-

ence, the runs were conducted identically to the runs described above.

I

Data Tagging - 32 - TR-88 1

References

Albus,James S.,Brains,Behavior,Robotics,Peterborough,Nil:BYTE Books, 1981.

Albus,James S.,"A theoryofcerebellarfunctions,"MathematicalBiosciencesI0,pp. 25-61,197 I.

Kanerva,Pentti,SparseDistributedMemory, Cambridge, Mass: MIT Press,1988.

Kanerva, Pentti,"Self-propagatingSearch:A UnifiedTheory of Memory," Center for the Study of Language

and InformationTechnicalReport No. CSLI-84-7,March, 1984.

Keeler,J.D., Unpublishedresults

Keeler,J.D., "Comparison between sparselydistributedmemory and Hopfield-typeneuralnetwork models,"

RIACS TechnicalReport86.3I,1987.

Keeler,J.D. and Denning, P. J.,"Notes on Implementationof SparselyDistributedMemory," RIACS Tech-

nicalReport 86.15,1986.

Mart, D.,"The cortexofthecerebellum,"JournalofPhysiology,202,pp. 437-470, 1969.

Ross,Sheldon,A FirstCourse inProbability,New York,New York: Macmillan, 1984.

RIACS
Mail Stop 230-5

NASA Ames Research Center

Moffett Field, CA 94035
(415) 694-6363

The Research Institute for Advanced Computer Science
is operated by

Universities Space Research Association
The American City Building

Suite 311
Columbia, MD 21044

(301) 730-2656

